468 research outputs found

    Measurement of the atom number distribution in an optical tweezer using single photon counting

    Full text link
    We demonstrate in this paper a method to reconstruct the atom number distribution of a cloud containing a few tens of cold atoms. The atoms are first loaded from a magneto-optical trap into a microscopic optical dipole trap and then released in a resonant light probe where they undergo a Brownian motion and scatter photons. We count the number of photon events detected on an image intensifier. Using the response of our detection system to a single atom as a calibration, we extract the atom number distribution when the trap is loaded with more than one atom. The atom number distribution is found to be compatible with a Poisson distribution.Comment: 6 pages, 5 figure

    Room temperature stable single-photon source

    Full text link
    We report on the realization of a stable solid state room temperature source for single photons. It is based on the fluorescence of a single nitrogen-vacancy (NV) color center in a diamond nanocrystal. Antibunching has been observed in the fluorescence light under both continuous and pulsed excitation. Our source delivers 2*10^4 single-photon pulses per second at an excitation repetition rate of 10 MHz. The number of two-photon pulses is reduced by a factor of five compared to strongly attenuated coherent sources.Comment: 7 pages, 10 figures, accepted to the special issue of the European Physical Journal D on "Quantum interference and cryptographic keys: novel physics and advancing technologies", proceedings of the conference QUICK 200

    Quantum optical non-linearities induced by Rydberg-Rydberg interactions: a perturbative approach

    Full text link
    In this article, we theoretically study the quantum statistical properties of the light transmitted through or reflected from an optical cavity, filled by an atomic medium with strong optical non-linearity induced by Rydberg-Rydberg van der Waals interactions. Atoms are driven on a two-photon transition from their ground state to a Rydberg level via an intermediate state by the combination of a weak signal field and a strong control beam. By using a perturbative approach, we get analytic results which remain valid in the regime of weak feeding fields, even when the intermediate state becomes resonant. Therefore they allow us to investigate quantitatively new features associated with the resonant behaviour of the system. We also propose an effective non-linear three-boson model of the system which, in addition to leading to the same analytic results as the original problem, sheds light on the physical processes at work in the system

    Diagrammatic treatment of few-photon scattering from a Rydberg blockaded atomic ensemble in a cavity

    Full text link
    In a previous letter we studied the giant optical nonlinearities of a Rydberg atomic medium within an optical cavity, in the Schwinger-Keldysh formalism. In particular, we calculated the non-linear contributions to the spectrum of the light transmitted through the cavity. In this article we spell out the essential details of this calculation, and we show how it can be extended to higher input photon numbers, and higher order correlation functions. As a relevant example, we calculate and discuss the three-photon correlation function of the transmitted light, and discuss its physical significance in terms of the polariton energy levels of the Rydberg medium within the optical cavity

    Analysis of the entanglement between two individual atoms using global Raman rotations

    Full text link
    Making use of the Rydberg blockade, we generate entanglement between two atoms individually trapped in two optical tweezers. In this paper we detail the analysis of the data and show that we can determine the amount of entanglement between the atoms in the presence of atom losses during the entangling sequence. Our model takes into account states outside the qubit basis and allows us to perform a partial reconstruction of the density matrix describing the two atom state. With this method we extract the amount of entanglement between pairs of atoms still trapped after the entangling sequence and measure the fidelity with respect to the expected Bell state. We find a fidelity Fpairs=0.74(7)F_{\rm pairs} =0.74(7) for the 62% of atom pairs remaining in the traps at the end of the entangling sequence
    • …
    corecore